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Abstract

This paper presents the stability analysis of simply supported and cantilever, thin walled, open section, orthotropic
composite beams subjected to concentrated end moments, concentrated forces, or uniformly distributed load. In the
analysis, both the transverse shear and the restrained warping induced shear deformations are taken into account. An
explicit expression is derived for the lateral-torsional buckling load of composite beams.

A simple expression is also presented, which shows the approximate reduction in the buckling load due to shear
deformation. It enables us to decide whether the effect of shear deformation is negligible. © 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

When symmetrical beams are loaded in the plane of symmetry they may deflect in the symmetry plane
(Fig. 1(a)). However, at a certain level of the applied load, the beam may buckle laterally, while the cross-
sections of the beam rotate simultaneously about the beam’s axis (Fig. 1(b)).

This phenomenon is called lateral-torsional buckling (or lateral buckling), and the value of the load at
which buckling occurs is called the buckling load or critical load.

This problem is important if the beam’s transverse bending (flexural) stiffness is significantly smaller than
its vertical bending stiffness.

The lateral-torsional buckling of beams was extensively treated in several books (Allen and Bulson,
1980; Galambos, 1998; Kollar, 1999; Timoshenko and Gere, 1961; Trahair, 1993) and articles (Anderson
and Trahair, 1972; Clark and Hill, 1960; Helwig et al., 1997; Nethercot, 1973; Nethercot and Rockey, 1971;
Roberts and Burt, 1985) in the past.

The buckling load of a simply supported beam subjected to concentrated moments () at the ends can
be calculated from the following expression (Anderson and Trahair, 1972)
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Nomenclature

List of symbols

A area of the cross-section

EA _tensile stiffnesses of a composite beam
El,, EI. bending stiffnesses of a composite beam
EIl, warping stiffness of a composite beam

f distance between the shear center and the location of the applied load (Fig. 2)
GI, torsional stiffness of a composite beam
h plate thickness
io polar radius of gyration about the shear center (Egs. (5) and (46))
ki “effective” span
/ span of the beam
M., critical value of the bending moment resulting in lateral buckling
M,, M. bending moments in the x—z and x—y planes Fig. 6
M, bimoment
&32 Euler buckling load in the x—y plane (no shear deformation)
ZXUBH/, torsional buckling load referred to the shear center (no shear deformation)
]l/c‘fw torsional buckling load when El,, > GI, (no shear deformation)
BS

Euler buckling load in the x—y plane (with shear deformation)

NBS torsional buckling load referred to the shear center (with shear deformation)
torsional buckling load when EI,, > GI, (with shear deformation)

Dy, p-  transverse loads (per unit length) acting on a beam (Fig. 6)

P, critical value of the concentrated force resulting in lateral buckling

Ger critical value of the uniformly distributed load resulting in lateral buckling

Sy, Sz, Sy, Sww shear stiffnesses of a beam

t torque load (per unit length) acting on a beam (Fig. 6)

T torque (Fig. 6)

Ty Saint Venant torque

T, restrained warping induced torque

U strain energy

u, w displacement in the y and z directions

V,, V. shear forces (Fig. 6)

w work done by the external load

Zge coordinates of the shear center (Fig. 2)

o reduction in the buckling load due to the shear deformation
b cross-sectional property (Eq. (21))

7,,» ¥.  shear strains in the x—y and the x—z planes

¥ twist per unit length

Jp twist per unit length, when there is no shear deformation
UJs twist per unit length due to the shear deformation of the wall

Ky, k. derivatives of y,, and y, (Eq. (12))

% 1.  rotations of the cross-section about the z- and y-axes

1/ rotation of the cross-section about the x-axis (angle of twist)
n potential energy of the beam
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Fig. 1. In plane (a) and lateral-torsional (b) deformation of a symmetrical beam loaded in the symmetry plane.

M2 — NEBM. — NENB,2 =0, (1)

crz

where f3, is a cross-sectional property (given in Section 4.1), and

7'52

NB =" EL. (2)

crz 2

is the Euler buckling load of a simply supported slender beam subjected to concentrated axial forces at the
ends if the beam buckles in x—y plane, / is the length of the beam, EL. is the bending stiffness about the
vertical (z) axis (Fig. 1), while
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-~ =~ 1
N2, = N2, + 3Gl 3

is the buckling load of the same beam if it buckles torsionally about the shear center. Here

2
S (4)

cro l~2 12
is the torsional buckling load when EI, > GI,, where GI, and EI,, are the torsional and the warping stiff-
nesses, respectively. i, is the polar radius of gyration of the cross-section about the shear center
I, +1I
2 I
=z, +—, 5

l(!} ZbL + A ( )
where z is the distance between the shear center (SC) and the centroid (C) (Fig. 2). ,, and /.. are the second
moments of area about axes y and z, respectively, and A is the area of the cross-section.

Eq. (1) yields

o [ B B \> NE2
M,=NB [ d§ = . 6
az| 5 F > ) T D (6)

crz

The buckling load of a simply supported beam subjected to uniformly distributed load (¢) is given by the
root of the following equation (Kollar, 1999):

IS

lz,w

Fig. 2. Location of the shear center and the applied load.
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43 242 23 | . o
( 1272 ) Pao = | T2 Pt = /| Nedar = NeNegyi, = 0, 0
0.01181 0.05800 0.10132

which yields

qcrl2 3B 2 N‘Ewl?)
My =T = LISNZ, | 0466/ +0.2676, + | (0.466/ +0.2674,)° + - |. (8)

crz

In these equations f'is the distance between the shear center and the location of the applied load (Fig. 2) and
[ is the length of the beam.

Clark and Hill (1960) presented a formula (see also Allen and Bulson, 1980) for the buckling load of
simply supported and cantilever beams in the form

5 2 — — 5
T~ , EI, GI; (kI)

My =C —= EL.| Cof + G536, + Gf+C +=|14+= , 9

](kl)z of 3B (Cof 301) 7l ( I, 2 ( )

where C|, C,, C; are constants and M, is the critical value of the maximum bending moment, which is
related to the loads (see Table 1). k = 1 for a cantilever beam otherwise it depends on the end conditions for
a simply supported beam. When the rotation of the end cross-sections are not restrained about the z-axis
k = 1, when these rotations and warping are restrained k& = 0.5. (The constants Cy, C,, C; in Table 1 were
taken from Clark and Hill (1960) for all the cases except for case d. For this case the constants were de-
termined in Section 5.4.)

Note that the constants for the simply supported beam agree within 5% of those given in Egs. (6) and (8),
which is negligible for practical purposes. We also note that Eq. (9) gives the accurate value of the buckling
load for concentrated moments.

Care should be taken when Eq. (9) is applied to short cantilever beams subjected to loads above or below
the shear center. By numerical comparison we obtained that for short beams Eq. (9) gives reasonable value
for the critical load only if the beam is subjected at the shear center (see Section 7).

When pultruted composite beams are made of unidirectional carbon fibers the longitudinal Young
modulus may be 20-30 times higher than the shear modulus, which means that the effect of shear defor-
mation is higher by an order of magnitude than that of isotropic beams. Pultruted beams are often made of

Table 1
Parameters in Eq. (9)
C, G C3

Simply supported beam (k=1)
(a) End moments 1 0 0.5
(b) Uniformly distributed load (M, = g 1*/8) 1.13 0.45 0.267
(c) Concentrated force (Mg = Pc1/4) 1.35 0.55 0.212
(d) Two concentrated forces (M = Pl/3) 1.12 0.51 0.245

Simply supported beam (the rotations (about the z-axis) and the warping of the end cross-sections are restrained, k=0.5)
(a) Concentrated force (M., = Pe.1/4) 1.07 0.42 n.a

Cantilever beam (k=1)
(a) Distributed load (M., = g/*/2) 2.05 n.a n.a
(b) Concentrated force (M, = P l) 1.28 n.a n.a
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Fig. 3. Horizontal displacement of a beam when the shear deformation is neglected (a), and when only the shear deformation is taken
into account (b).

glass fibers with about 50% of unidirectional fibers and 50% of continuous mat. For such beams the ratio of
the Young modulus and the shear modulus is in the range of 5-10. The horizontal displacements of the
beam is illustrated in Fig. 3. When there is no shear deformation the beam deforms as shown in Fig. 3(a),
while when there is only shear deformation (no bending deformation) the deformed beam is illustrated in
Fig. 3(b).

Several authors investigated the lateral-torsional buckling of pultruted composite beams (Brooks and
Turvey, 1995; Davalos and Qiao, 1997; Davalos et al., 1997; Johnson and Shield, 1998; Lin et al., 1996;
Mottram, 1992; Pandey et al., 1995; Sherbourne and Kabir, 1995; Turvey, 1996; Zureick et al., 1995) and
although most of the authors mention the effect of the shear deformation only Sherbourne and Kabir
(1995) considered it in their analytical result. In their article they took the transverse shear deformation into
account but they neglected the shear deformation in torsion. They considered simply supported beams with
doubly symmetric cross-section subjected to loads acting at the shear center.

In this paper we wish to determine the lateral-torsional buckling load of composite beams taking both
the lateral and torsional shear deformation into account. (The cross-section of the beam may be mono-
symmetrical and the beam may be loaded above or below the shear center.)

2. Problem statement

We consider symmetrical cross-section prismatic beams loaded in the plane of symmetry. The beam is
either simply supported at both ends (Fig. 4) or one end is built in and the other is free (cantilever, Fig. 5). A
simple support restrains the displacements and the rotation about the beam’s x-axis, but allows the rotation
about the y- and z-axes, and the warping of the cross-section.
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Fig. 5. Cantilever beams.
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The simply supported beam may be loaded by concentrated moments at the ends (Fig. 4(a)), by a
uniformly distributed load acting at a distance f from the shear center of the beam (Fig. 4(b)), by a con-
centrated load at the midspan (Fig. 4(c)) or by two concentrated forces at the thirds of the span (Fig. 4(d)).

The cantilever beam may be loaded at the shear center by a uniformly distributed load (Fig. 5(a)) or by a
concentrated force (Fig. 5(b)). The loads are acting at the shear center.

We determine the critical load of the beam subjected to the above mentioned loads.

3. Approach

The critical load of a beam can be determined analytically, numerically, or by experiments. Here, our
main interest is to derive explicit expressions for the buckling loads. However, we will use a commercially
available FE code (ANSYS, 1997) to verify our results numerically, and we will also compare our results to
experimental data from the literature.

It is assumed that the material behaves in a linearly elastic manner and the deformations are small. We
are interested only in the bifurcation load, the deformations prior to buckling are not considered.

Under the applied loads the beam may buckle globally or its walls may buckle locally (plate buckling).
Here local buckling of the members (such as web or flanges) are not considered.

When modelling the beam “first order shear theory” is applied. Beams may undergo transverse and
torsional shear deformation which must be taken into account. Wu and Sun (1992) suggested a model to
account for the torsional shear deformation, which was simplified in Kolldr (2001a). This latter model is
adopted here.

4. Governing equations

The governing equations of the beam theory are summarized below. The equilibrium equations, the
strain—stress relationship and the constitutive equations are as follows (Kollar, 2001a):
Equilibrium equations:

dM, dM, dm, dv, dr. d7,, dT,
==V =l =T, +

=— — = —p, = —f, 10

where M., V,, p, and M,, V., p. are the bending moment, the shear force and the external load in the y—x and
z—x planes, respectively. M,, is the bimoment, and ¢ is the distributed torque load (Fig. 6). Ti, and T, are the
Saint-Venant torque and the restrained warping induced torque respectively and the total torque (7)) is

Strain—displacement relationships:

_dy _ dz

dyr dv _dw
dxv Ky_ dxa dxa dxv

19525_19]37 ’))y:a_XJM yz_a_sz
(12)

K, =

where v and w are the displacements in the y—x and z—x planes, y is the rotation of the cross-section about
the x-axis (angle of twist). x, and y, are the rotations of the cross-section about the z- and y-axes; while ¥ is
the twist per unit length, when there is no shear deformation present in the beam. y, and y, are the shear
strains in the x—y and the x—z planes, while 9 is the twist per unit length due to the shear deformation of
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Fig. 6. Transverse and torque loads acting on the beam (top), internal moments and shear forces (bottom).

the wall (see also Roberts and Al-Ubaidi, 2001). We note that in the presented theory the first derivative of
the displacements are

dv dw dys
a:Xy_‘_yyv a:}(z+yz7 a:ﬂ3+1957 (13)
while if there is no shear deformation (e.g. in Vlasov’s beam theory), 7, = 7, = s = 0, the derivatives are:
do dw dy
— =y, —= — = . 14
dx Xy? dx Azs dx B ( )
Constitutive equations: Considering a cross-section which is symmetrical with respect to the z-axis, the
constitutive equations are (Kollar, 2001a):

M, EL. 0 0] (=

M, +=|0 EL 0 Ky (15)
M, o o ELJ\T

By (S 0 S.](n

o=10 8. 0|97 (16)
Tw S yo 0 S ww 195
T, = GI,, (17)

where ﬁzz, ﬁ}y, ﬁw, and E?\lt are the bending, warping and torsional stiffnesses of a composite beam,
respectively. (For isotropic beams the same expressions are applicable without the “hats™.)

The calculation of the stiffnesses (E‘?ZZ, l/ﬁw, ﬁw, Gl, S, S.., Sww, Syw) are given in Kollar (2001b), and
the formulas for a monosymmetric I-beam are summarized in Appendix A.
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4.1. Governing equations for lateral-torsional buckling

The governing equations for lateral-torsional buckling of beams without shear deformation are given in
Kollar (1999). The equilibrium equations, regardless of the presence of the shear deformation, are

dM, M,
dx - Vyv dx - 7-;1)7 (18)
dVy d7,, dT, _
P dx +E_ =, (19)
where
d* (M) d*v d*M, dy
Py = - dx2 ) = - ydxzf }lp'i‘ﬁld ( y dx) (20)

M, is the horizontal bending moment of the beam in the z—x plane which can be calculated from the vertical
loads, and f'is the distance of this load from the shear center.
f, is a cross-sectional property defined for an isotropic cross-section beam as (see Kollar, 1999)

Bl :Jl +J2_2ZS<:- (21)
For a beam made of isotropic material J; and J, are
1 1
J=— / 2dd, S =— / zy*d4. (22)
Ly Ji) Ly Ju
For a thin walled, open section, isotropic beam J; and J, may be written as
1

Jy = (EnZdny,  J,=

EI,

Eh)zy* 2

where £ is the thickness of the wall and 7 is the coordinate along the perimeter. For an orthotropic sym-
metrical lay-up beam, Eh is replaced by 1/a,, and EI,, is replaced by EI,,. This gives

1 1 1 1

J == / —Zdy, J=— —Zy2 dy. (24)
EI, J(s) au EL, J(s) an

For an orthotropic I-beam these integrals result in

1 1 3 1 ; 1 b41 _b42
J = — — b (d — Ze +—b zZ,——— [0) [0) ,
1 EIyy ( (all)f fl( ) (all)ﬁ /2 (a“)w 4 —

1 1 b 1 b
J = — ! d Ze +— f7
2 EIW ( (Cl“)f 12( ) (a“)f 12 )

The symbols are defined in Appendix A.

We note that for a doubly symmetric cross-section beam 5, =J, =J, = 0.

In the above equilibrium equations the bending moment M, is known, and the shear force V. does not
appear. The relevant part of the strain—displacement equations (Eq. (12)) is

dy, ﬁiﬂ
dx’ odx’

(26)

K, = —
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_ di L dy
I=-=2 ds=—"—vp (27)
dv
V= I (28)

while the relevant part of the strain—stress relationship (Eqs. (15)—(17)) is

(b1 &) {7

M, 0 EL|\LTJ

{Vy}: Sy S {y} (29)
T‘” §yw §ww 193 7

Ty, = GIv

5. Simply supported beams
In this section simply supported beams are considered (Fig. 4).
5.1. End moments

When the beam is subjected to concentrated bending moments at the ends (Fig. 4(a)) Eq. (20) simplifies
to

d? d*v d?
p= MG = B

When the beam is simply supported the displacements in the y direction and the rotation about the x-axis
are zero

(30)

=0, Yy=0 atx=0,L (31)
The end cross-sections may rotate about the z-axis and is free to warp, hence

M, =0, M,=0 atx=0,/. (32)
The following displacement functions satisfy the boundary conditions:

v:vosin’%‘, Xyzxocos’fm., o

¥ =, sin 2, ¥p = U cos ¥, i=12,... (33)

The deformation of the beam for i = 1 is illustrated in Fig. 1(b). At the supports the beam rotates about the
z- and y-axes and the cross-section warps, however the rotation of the cross-section about the z-axis is zero.
(We note that these displacement functions satisfy the governing equations.)

By substituting Eq. (33) into Eqgs. (26)+(28) and Eq. (30), then ., I" and y,, Js and ¥ into Eq. (29) and the
obtained expressions for M;, M,, and V,, T,,, T, and p, ¢t into the equilibrium equations (Egs. (18) and (19)),
after algebraic manipulation Eq. (18) gives

(5o m) ()]

and Eq. (19) results in
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2n? ~ 272 [0 0 27 0 -1 o it~ % . inx

— S| +— —~ — M, ——[S — =0, 35
(FoFlo @l ~mwll o DU -Tola) =% )

where

= El. 0
EI — zz e
- |5 0, (36)
5 S, S
Sl= |7 2. 37
[ } l Sy(U S(/)(l) ] ( )

By eliminating y, and 9§ from Egs. (34) and (35) we obtain

([E] - [§]<izl—’;2[ﬁ} + [§}>1[§] + [8 Z;(H +Mcr[_01 ﬁj){l’;‘; } -0, (38)

The lowest buckling load is obtained if i = 1. With this substitution the condition of the nontrivial solution
is

‘[QHMC{_OI ;),IIH =0, (39)

where

0= ({[737} . m*) o al ()

Eq. (39) results in a second order equation to determine the critical bending moment, M,,. (Since the
assumed displacement functions Eq. (33) satisfy both the boundary conditions and the governing equations
the derived expression for M., results in the exact buckling moment.)

Approximate solution: The solution simplifies when the cross-section is doubly symmetric, and hence,
Sy = 0. This condition can be taken as an approximation for cross-sections which are symmetrical only
about the z-axis:

§,, ~ 0. (41)
In this case matrix [Q] becomes
NE 0
[Q]—[ TR ] (42)
where
P
NG = (Th—) , (43)
Ncrz Syy

cry cro

-~ ~ 1 —~
N2 = N3 +=Gl,. (44)
l

w
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Eq. (43) was first derived by Engesser (1889). Here

-1

~ 1 1

S
2 Swa)
(0]

Ccro

N and N® are given by Egs. (2) and (4).

crz

The polar radius of gyration of the cross-section about the shear center for an orthotropic beam is

E‘7\/’ E‘Yzz
R ki (46)
Fd

where E4 is the tensile stiffness of the composite beam.
We note that N5 and Nclisb are the in-plane buckling and torsional buckling loads of a simply supported
beam taking the shear deformations into account (Kollar, 2001a).
By this simplification of matrix [Q] Eq. (39) yields
NBS _Mcr

crz

- = 0. 47
~My 2N + BM (47)

By rearranging Eq. (47) we obtain
M2 — NP My — NESABS2 — 0, (48)

crz ez eryfo

Note that Eq. (48) is identical to Eq. (1), which was derived for a beam without shear deformation, if the
following substitutions are made:

-1

N . ] 1

W s (Th—) , @)
Ncrz SW

-1
. ] 1

Ng, = Naow = | =5+ : (50)
Ncrw ,‘?)SU)(U

NE, — NBS, (51)

where N2 and NB
The effect of neglecting S, will be investigated in the numerical examples.
Egs. (49)-(51) show that both the horizontal shear deformation (through §,,) and the torsional shear

deformation (through S,,,) reduce the critical moment (M,,).

are given by Egs. (2) and (4), and ]T/g[// is given by Eq. (3) and NB3

cry

by Eq. (44).

5.2. Uniformly distributed load

A simply supported beam subjected to a uniformly distributed load (g) is considered (Fig. 4(b)). The
bending moment (M,) is given by
x(I —x)

2 )
and the coefficients of the governing differential equations (Egs. (18)—(20)) are not constant.

Following Chwalla’s steps for beams without shear deformation (Kollar, 1999) we derive an approxi-
mate solution for the differential equations by using the Ritz method with one term approximation.

M, = (52)
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The potential energy of the beam is
nH=uv+w, (53)
where U is the strain energy

GI, [! El, [! EL. [! S, [ S ! S
U= [ g Ze [ paer 2= [ dy i/ 2 dx ﬂ/ 92 dx 4+ 220
2 +2LA +2l£@ T ), Wy Usd e

0

1
X / "/yﬁs dx, (54)
0
and W is the work done by the external load (Kollar, 1999)
1 1
W= [ s - 2utncar - ) / gy dx (55)
0

We assume the following approximate displacement functions (which satisfy the boundary conditions Egs.
(31) and (32)):
. TX X
v ="vosin—r, Ky = 20 COS
X X (56)
zp:wosinT, ﬁB:ﬁgCOST.

The deformation of the beam is illustrated in Fig. 1(b). The principle of stationary potential energy gives

o1 ol
oy o9F 57
oIl ol

Substituting Eqgs. (53)-(56) into Eq. (57) we obtain after algebraic manipulations

(rem-m){i}-T{i} -0 o

while substituting Eqs. (53)—(56) into Eq. (58) results in:

Gt O B 0 —r vl Tl %
((1—2[5‘]—"—?{0 G[t:| +ﬁqcr[ 7{247;312 12n 12/31 112f {wo}_7[s]{§g} =0. (60)

By eliminating y, and 9§ from these two equations we obtain

0 1;22+3 2 { " }
: ’ =0, 61
—TEP SRR+ Yo (61)

where [Q] is given by Eq. (40).
The condition of the nontrivial solution is:

_ 43 12

23 > L2y
72;3 POEPR + S
Further approximation: When the off diagonal terms in the shear stiffness matrix are zero or neglected
(S} = 0), matrix [Q] simplifies to Eq. (42) and Eq. (62) can be written in the form

OQ+%

O] + gr (62)
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w43\’ 4.2 n’ -3 1 2 77BS BS AYBS 2
( 1272 ) ! 9or — 1272 Bl + ; f [ ]vcrzqCr - Ncercrwlw - 07 (63)
——
oons1 0.05800 0.10132
where N2, ﬁgi are defined by Eqgs. (43) and (44). We note that Eq. (63) is identical to Eq. (7) if the

substitutions given by Egs. (49)-(51) are made.
5.3. Concentrated load at the midspan

We consider a simply supported beam subjected to a concentrated force (P) at the midspan (Fig. 4(c)).
The Ritz method is applied to derive a closed form approximate solution for the buckling load. The
function of the bending moment M, is

P : !
_ J 3% if 0 <x< 35

My_{g(lx), if £<x<l, (64)
and the expression for the work done by the external load is (see Eq. (55))

1 1 —
W=-3 /0 [~BiM, 9 — 2Mic.] dx — %P(%)Z, (65)

where V), is the rotation of the cross-section at the position of the applied load.

With the above bending moment and external work, following the same steps as in Section 5.2, we obtain
the following equation for the critical load:
0 — T4y

2 2
- 8;54[ 8n24lﬁ] +%lf

’ O] + Per

‘ = 0. (66)

By applying the §yw = 0 approximation, we obtain

244\ 24 2 | - S
(”8; ) R e A [ CT A o ) (67)
N—— ~—
0.03086 0.07434 0.20264

5.4. Two concentrated forces at the thirds of the span

When the beam is subjected to two concentrated forces (Fig. 4(d)) the buckling load can be determined
similarly as in Section 5.3. The result, without giving the details, is

O+ Pa| oo e =0 (68)
RS =T =R |

By applying the Eyw = 0 approximation, we have

8n2+27 2 - 8712 — 27 3 b s opsa
( 36n? ) ! Pcr B 3672 ﬂl + ? f lNCTZPCf - Ncrz Ncn//lw =0. (69)

0.08893 0.14623 0.30396
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5.5. General case

Eqgs. (48), (63), (67), and (69) can be written in the form

ws . NE2
My = CINBS | Cof + C3fy + | (Cof + C3B)) + e | (70)

crz

crz

where C), C, and C; are given in Table 1 and N and Ngi, are given by Egs. (43) and (44).

We observe that the buckling load for a simply supported beam can also be calculated such that the
stiffnesses EIZZ and EIU are modified due to the shear deformation in the formula of the buckling load of the
corresponding beam without shear deformation (see Eq. (9)).

The necessary modifications are

Beam without shear deformation Beam with shear deformation
E'} — L4 ’TZ £
zz (Elzz (kl)2 Sy ’ (71)
-1
7 1 2 1
Elw — (E + (kl) Emw> ’

where k£ = 1 and [ is the total length of the simply supported beam.
By making the above substitutions in Eq. (9), it becomes identical to Eq. (70).

6. Cantilever beams

For cantilever beams the Ritz method with one term approximation significantly overestimates the
buckling load even for the case of beams without shear deformation (Szatmari and Tomka, 1991). In order
to obtain a satisfactory solution between ten and twenty terms are required in the analysis (see Roberts and
Burt, 1985).

Using the analytical solution in Clark and Hill (1960), we arrive at Eq. (9) by substituting k/ for /, where
kl is the “‘effective” length. Clark and Hill (1960) gives £ = 1 for a cantilever beam subjected to a uniformly
distributed load or to a concentrated force at the end.

Here we suggest the modification of Eq. (9) (presented by Clark and Hill (1960) for beams without shear
deformation), similarly as it was derived for simply supported beams.

Accordingly, the buckling load of a cantilever beam can be calculated from Eq. (9) when the stiffnesses
are modified as shown in Eq. (71). In this equation / is the total length of the cantilever and £ = 1.

The accuracy of this solution will be investigated numerically in the next section.

7. Numerical examples
7.1. Simply supported beam with doubly symmetric cross-section

We consider a beam made of unidirectional carbon fiber reinforced epoxy. The Young modulus in the
fiber direction is E; = 148 kN/mm? and the shear modulus is Gy, = 4.55 kN/mm? (Tsai, 1988).

The cross-section of the beam is given in Fig. 7. The top and the bottom flanges are identical,
by = by, =120 mm and hy; = hy;, = 5 mm. The beam is simply supported at the ends, the length is / = 1600
mm.
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Fig. 7. Cross-section of a graphite epoxy composite I-beam.

The beam is subjected to concentrated moments at the ends. We determine the critical value of M,
below. The beam is doubly symmetric, hence z,, = E S = SZ,,, = 0. The nonzero stiffnesses were cal-
culated according to the expressions given in Appendlx A. The cross-sectional properties presented in Table
2 (right column).

Eqgs. (2), (4) and (3) give

NP =822 kN, NP =843 kN, NBwf861kN

crz crw

When shear deformation is neglected, the buckling load is calculated from Eq. (6). It gives
M2 =51.92 kNm.

Taking the shear deformation into account we have (Eqs. (43), (45) and (44))
NP =696 kKN, NP =714 kN, NBS = 732 kN.

crz Ccrw
With these values Eq. (6) gives
MBS = 44.06 kNm.

Table 2
The stiffnesses and geometrical parameters of the beams used for the numerical examples
b, = 60 mm by, = 120 mm

EIL. (kNmm?) 120.07 x 10° 213.3 x 106
EI, (kNmm®) 185 x 10° 832.5 x 10°
GI, (kN mm?) 0.057 x 10° 0.068 x 10°
S, (kN) 3412.5 4550
Suw (KNmm?) 14482 x 103 17773 x 103
S, (kN mm) —94792 0
f, (mm) 84.83 0
2 (mm?) 4514 3806
Jiop (mm) —13.89 —62.5

Jrottom (Mm) 111.11 62.5
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The same beam was investigated with the aid of a finite element program (ANSYS). Four node Mindlin
shell elements were used with the maximum element size of 20 mm. The result is

MANSYS — 4419 KNm.

Note that when only the transverse shear deformation is taken into account (but the shear deformation in
warping is neglected) the buckling load is

M = 47.78 kNm.

To show the effect of the shear deformation the buckling loads were calculated for different lengths of the
beam. The results are given in Fig. 8.
The beam was also subjected to either a uniformly distributed load or to a concentrated force at the
midspan. Trials were run applying the load at the shear center, the top flange, and the bottom flange.
The buckling load was calculated according to Eq. (70) with the appropriate C; parameters and using the
finite element program. The result are given in Fig. 8.

7.2. Simply supported beam with monosymmetric cross-section

We consider a simply supported beam with the same material properties that are given in Section 7.1.
The cross-section is given in Fig. 7. The top and the bottom flanges are different with b5 = 120 mm,

bs, = 60 mm, hence the cross-section is monosymmetrical.
140 1400
w l No shear deformation 1200 Bottom flange loading
3 @ CE — — — —Transverse shear deformation = = = — Shear center loading
oo 1 B O N s—
N Transverse and warping shear = o o ANSYS
1 . deformation .
T 80 N e o ANSYS E 800 <
z . > N
= =
'g 60 5 600 4
40 - 400
20 4 200
0 T T 0 T T
1000 1500 2000 2500 3000 1000 1500 2000 2500 3000
(a) Length [mm] (b) Length [mm]
900
goo ¢ Bottom flange loading
B — — — — Shear center loading
700 4 l Top flange loadi
e—— op flange loading
" PN PaN
600 e ANSYS
Z 500 - ..
= .
5 400 -
300 -
200
100
0 T T
1000 1500 2000 2500 3000
(c) Length [mm]

Fig. 8. Critical loads of the doubly symmetric simply supported beams.
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Fig. 9. Critical loads of the monosymmetric simply supported beams.

The beam is subjected to concentrated moments at the ends.

The properties of the cross-section were calculated according to the expressions given in Appendix A and
according to Eqgs. (21) and (25) and are given in the left column of Table 2.

The critical load was calculated from Eq. (39) for different lengths of the beam. The results are presented
in Fig. 9 by solid line. These results show good agreement with the FE calculations which are also given in
this figure.

The approximate buckling loads were also calculated by Eq. (6) taking the substitutions in Eq. (71) into
account. These results are presented by a dashed line.

The figure shows that the shear deformation may significantly reduce the buckling load of short beams
and that the suggested approximation is reasonable.

The beam was also subjected to either a uniformly distributed load or to a concentrated force at the
midspan. The loads were applied either at the shear center, the top flange, or the bottom flange.

The buckling loads were calculated according to Egs. (62) and (66) and by using the finite element
program. The result are given in Fig. 9b and c.

7.3. Cantilever beam

A cantilever beam with the same material properties and cross-section given in Section 7.1 was con-
sidered. The beam was subjected to a uniformly distributed load and to a concentrated force at the end. The
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Fig. 10. Critical loads of the cantilever beams.

loading was applied at the shear center. Buckling loads were calculated according to Eq. (9) with the
substitution suggested in Eq. (71) and by using the finite element program. The results are given in Fig. 10.
It shows that for short beams the shear deformation reduces the buckling load, and the suggested calcu-
lation is reasonable.

7.4. Comparison with published results

Mottram (1992) investigated three E-glass reinforced pultruted doubly symmetric I-beams. Warping,
twisting, and rotation about the minor axis (z) were restrained at the supports, only rotation about the
major axis (y) was allowed. The beams were subjected to a concentrated force at the midspan applied at the
top flange. In the general expression for the buckling load Eq. (9) the parameters are (Table 1): k£ = 0.5,
C, =1.07, C, = 0.42. The bending and warping stiffnesses were modified as proposed in Eq. (71) with
k = 0.5. The calculated critical buckling load, taking the shear deformations into account, is P25 = 5.1 kN
(and without shear deformation P2 = 5.5 kN) which is in the upper range of the critical loads received from
the experiments reported in range 2.8-5.75 kN. The higher loads belong to the cases where the behaviour of
the beams were closer to the theoretical bifurcation. The lower critical load values show the great sensitivity
due to geometric and loading imperfections and due to different uncertainties in the test set-up e.g. the
support conditions did not give full restraints against warping and lateral rotation, which reduces the
buckling load.

Zureick et al. (1995) analysed an E-glass doubly symmetric I-beam. The beam was simply supported and
loaded at the third points with concentrated forces applied at the top flange. We determined the buckling
load using Eq. (69): P25 = 63.3 kN (and without shear deformation P2 = 64.0 kN) which is very close to the
buckling load (P.; = 62.7 kN) determined by FE analysis in Zureick et al. (1995).

Lin et al. (1996) analysed numerically (FE) simply supported doubly symmetric I-beams subjected to
three different load conditions: concentrated moments at the ends, uniformly distributed load and a con-
centrated force at the midspan. The span of the beam was fixed and the critical loads were computed for
various E/G ratios. The same examples were solved using Eq. (70). The resulted critical loads coincide with
the loads given by the FE analysis (the errors are within 1%). We calculated the critical loads by neglecting
the effect of shear deformation and observed that the effect of shear deformation is negligible.

Sherbourne and Kabir (1995) published a method to determine the buckling load of doubly symmetric
thin-walled fibrous composite beams. We tried to compare our results with Egs. (27)—(29) and (32)—(34) of
Sherbourne and Kabir (1995). However, these equations may contain a number of unknown typographical
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mistakes and our effort therefore was unsuccessful. We wish to emphasize that our derived formulas offer
the following advantages: our results are valid for cross-sections with one axis of symmetry, the beam can
be loaded out of the shear center (e.g. top or bottom flange loading), the formulas derived in this article are
simpler than those of Sherbourne and Kabir (1995).

8. Discussion

For composite beams the shear deformation may significantly reduce the lateral-torsional buckling load.
This reduction can be taken into account if in the expression of the lateral-torsional buckling of beams

(without shear deformation, Eq. (9)), the bending stiffness (ﬁzz), and the warping stiffness (ﬁw) are re-
placed as follows:

—1 -1
—~ 1 2] — 1 S
EIzz — — + TE—Z = 3 EI({) — P + T[—z = . (72)
EIZZ (kl) Syy EI(U (kl) S(uu}
Below we discuss the circumstances under which the shear deformation affects the buckling load signifi-

cantly. To obtain simple result we consider a doubly symmetric beam loaded at the shear center, neglecting
the torsional stiffness (GI,), the critical bending moment is (Eq. (9))

= =
Mcr = C] 1_2 ElzzEI(u~ (73)

The effect of shear deformation is taken into account according to Eq. (71). The error, a result of neglecting
the shear deformation is defined as

o =< cr (74)

where M2 is the buckling load when the shear deformation is neglected, and MBS is the buckling load when
the shear deformation taken into account.
Introducing Eq. (72) and Eq. (73) the expression of the error yields to

~1 -1
2 1 21 1 2 ]
1 EI.. Syy El, Sow 1
o=1-—

=1- . (75)

2./ Tr T -~
Cl Z EIZZEIU) \/(1 +7;_22 é\yzz) (1 +7;_22/E\1w>

S W Sow

)

For a doubly symmetric I-beam (Appendix A)

and the above expressions (Eq. (75)) yields

1 b\’ E
+5(2) ¢

G

where b is the width of the flanges, / is the span of the beam, E is the Young modulus in the direction of the
x-axis and G is the shear modulus. (The second approximation is applicable if « is small, say o < 20%.)
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For an isotropic beam E/G = 2.5, for a standard glass polyester pultruted profile £/G is in the range of
5-10 while for a unidirectional carbon epoxy composite beam E/G is in the range of 20-30. Consequently,
the effect of shear deformation is significant for composite beams even if the ratio //b is high. This is il-
lustrated below:

1/b Isotropic Glass reinforced (unidirec- Unidirectional carbon epoxy
tional fibers + mat)

E/A 2.5 5 10 20 30

5 o =9.0% o =16.5% o =28% o = 44% o = 54%

10 o =2.4% o=4.7% o=9.0% o=16.5% o=23%

15 o=1.1% o =2.1% o =4.2% o= 8.1% o =11.6%

20 o =0.6% a=12% o=2.4% o=4.7% o =6.9%

40 o =0.15% o =0.3% o= 0.6% o=12% o=1.8%

The error factor (x) derived above for doubly symmetrical I-beams subjected at the shear center, can be
applied, as an approximation for beams with different cross-sections and loading.

9. Conclusion

Explicit expressions were derived for the lateral-torsional buckling loads of composite beams. The effect
of shear deformation can be taken into account by simply reducing the bending and warping stiffnesses of
the composite beams (Eq. (71)). The derived results were verified by numerical examples.
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Appendix A. Elastic properties of a monosymmetrical I-beam

In the following we present the elastic properties of a laminated (or pultruted) I-beam illustrated in Fig.
11.

The layup of the flanges and the web is symmetrical and orthotropic (and hence the matrix [B] is zero,
and the 1, 6 and 2, 6 elements of the [4] and [D] matrices are zero).

The tensile stiffness (E4) and the bending stiffnesses (EI.. and El,,) are (Barbero et al., 1993)

— b b by
il + f2 +

EA = , Al
(all)fl (all)fz (@) .
— by b; b;
EL. = L A2
(d]])w 12(011)(/{[ 12(a11)f2 ( )
o~ by, 2 by, 1 1 1 <b31 + b3,2>
El,=—"—(d—z) +—2-z+ by, + by, + ), A3
v (all)f'l( ) (an), © (dn), " (dn), T (an), 3 (A3
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Fig. 11. Cross-section of a monosymmetric I-beam.

where subscripts f; and f; refer to the top and bottom flanges, and ‘w’ refers to the web. a;; and d;; are the
elements of the compliance matrices of the laminate, and are calculated as

-1

ayn ap 0 Ay Ap 0

ap ap 0 | =|4p An 0 ; (A4)
L 0 0 a66_ L 0 0 A66

dy dp 0 Dy D, 07"

do dn 0 |=|Dn Dn 0 ; (A.5)
0 0 dg| |0 0 Dy

where 4;; and Dj; are the elements of the stiffness matrices of a laminate (Tsai, 1988) and must be calculated
for the top flange (f}), for the bottom flange (f3), and for the web (w). In Eq. (A.3)

hy, hy,

by = bw +§_an by =Zc _§7 (A6)

where z. is the location of the centroid (i.e. the “center of gravity”)
1
PR S A (A7)
EA (all)fl (all)w 2

The torsional and warping stiffnesses are (Barbero et al., 1993)

— by, by, d

Gl =4 1+ -2+ , A8

' ((d66)f1 (dss) (déé)w> .
—~ b
El,=—" ed (A9)
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where the location of the shear center e is

B
e=d—— 2 (A.10)

3 3
fi (all>fl + bfZ (flll)f2

The shear stiffness matrix [S] is the inverse of the shear compliance matrix [3]:

—~ ~ _1

~ SW 0 S Yo § VY 0 3‘ Yo
Sl={0 5. 0 |=|0 5 0], (A.11)
gyw 0 gww ‘§ Yy 0 § ww

where (Kollar, 2001b)

. a .
PR Y (DS CV S GO/ (A.12)
vy by (1+ 6.) 2
gil s¢ bfz(l +E)

o (ags), 1 (aes)bn 1 (ass) by

= Y+ — ' — 2 A.13
== ThT e Tk a2 o (A-13)
o = L2 (095 [0, (A.14)

> bfl bfz
. 1.2 (ass) , (ass),
S0 = - + , (A.15)
and

5sc:d—(zc—|—zsc)7d—e (A.16)

(ze+2ze) e

When the flanges and the web are made of a single orthotropic layer the expressions of ay, ag, di; and
dgs (Eqs. (A.4) and (A.S)) simplify to
1 1 12 12
_— a, = — = — = —
E]h, 66 Glzh, 11 E1h3 ) 66 G12h3 9

where E; is the Young modulus in the direction of the beam’s axis, G, is the in-plane shear modulus, and %
is the thickness of the laminate.

apn =
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