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Abstract

This paper presents the stability analysis of simply supported and cantilever, thin walled, open section, orthotropic

composite beams subjected to concentrated end moments, concentrated forces, or uniformly distributed load. In the

analysis, both the transverse shear and the restrained warping induced shear deformations are taken into account. An

explicit expression is derived for the lateral-torsional buckling load of composite beams.

A simple expression is also presented, which shows the approximate reduction in the buckling load due to shear

deformation. It enables us to decide whether the effect of shear deformation is negligible. � 2002 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

When symmetrical beams are loaded in the plane of symmetry they may deflect in the symmetry plane
(Fig. 1(a)). However, at a certain level of the applied load, the beam may buckle laterally, while the cross-
sections of the beam rotate simultaneously about the beam’s axis (Fig. 1(b)).

This phenomenon is called lateral-torsional buckling (or lateral buckling), and the value of the load at
which buckling occurs is called the buckling load or critical load.

This problem is important if the beam’s transverse bending (flexural) stiffness is significantly smaller than
its vertical bending stiffness.

The lateral-torsional buckling of beams was extensively treated in several books (Allen and Bulson,
1980; Galambos, 1998; Koll�aar, 1999; Timoshenko and Gere, 1961; Trahair, 1993) and articles (Anderson
and Trahair, 1972; Clark and Hill, 1960; Helwig et al., 1997; Nethercot, 1973; Nethercot and Rockey, 1971;
Roberts and Burt, 1985) in the past.

The buckling load of a simply supported beam subjected to concentrated moments (M) at the ends can
be calculated from the following expression (Anderson and Trahair, 1972)
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Nomenclature

List of symbols
A area of the cross-sectioncEAEA tensile stiffnesses of a composite beamcEIEIyy , cEIEIzz bending stiffnesses of a composite beamcEIEIx warping stiffness of a composite beam
f distance between the shear center and the location of the applied load (Fig. 2)cGIGIt torsional stiffness of a composite beam
h plate thickness
ix polar radius of gyration about the shear center (Eqs. (5) and (46))
kl ‘‘effective’’ span
l span of the beam
Mcr critical value of the bending moment resulting in lateral buckling
My , Mz bending moments in the x–z and x–y planes Fig. 6
Mx bimomentbNN B

crz Euler buckling load in the x–y plane (no shear deformation)bNN B
crw torsional buckling load referred to the shear center (no shear deformation)bNN B
crx torsional buckling load when cEIEIx � cGIGIt (no shear deformation)bNN BS
crz Euler buckling load in the x–y plane (with shear deformation)bNN BS
crw torsional buckling load referred to the shear center (with shear deformation)bNN BS
crx torsional buckling load when cEIEIx � cGIGIt (with shear deformation)

py , pz transverse loads (per unit length) acting on a beam (Fig. 6)
Pcr critical value of the concentrated force resulting in lateral buckling
qcr critical value of the uniformly distributed load resulting in lateral bucklingbSSyy , bSSzz, bSSyx, bSSxx shear stiffnesses of a beam
t torque load (per unit length) acting on a beam (Fig. 6)
T torque (Fig. 6)
Tsv Saint Venant torque
Tx restrained warping induced torque
U strain energy
u, w displacement in the y and z directions
Vy , Vz shear forces (Fig. 6)
W work done by the external load
zsc coordinates of the shear center (Fig. 2)
a reduction in the buckling load due to the shear deformation
b1 cross-sectional property (Eq. (21))
cy , cz shear strains in the x–y and the x–z planes
# twist per unit length
#B twist per unit length, when there is no shear deformation
#S twist per unit length due to the shear deformation of the wall
jy , jz derivatives of vy , and vz (Eq. (12))
vy , vz rotations of the cross-section about the z- and y-axes
w rotation of the cross-section about the x-axis (angle of twist)
P potential energy of the beam
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M2
cr � bNN B

crzb1Mcr � bNN B
crz
bNN B
crwi

2
x ¼ 0; ð1Þ

where b1 is a cross-sectional property (given in Section 4.1), and

bNN B
crz ¼

p2

l2
EIzz ð2Þ

is the Euler buckling load of a simply supported slender beam subjected to concentrated axial forces at the
ends if the beam buckles in x–y plane, l is the length of the beam, EIzz is the bending stiffness about the
vertical (z) axis (Fig. 1), while

Fig. 1. In plane (a) and lateral-torsional (b) deformation of a symmetrical beam loaded in the symmetry plane.
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bNN B
crw ¼ bNN B

crx þ 1

i2x
GIt ð3Þ

is the buckling load of the same beam if it buckles torsionally about the shear center. Here

bNN B
crx ¼ 1

i2x

p2

l2
EIx ð4Þ

is the torsional buckling load when EIx � GIt, where GIt and EIx are the torsional and the warping stiff-
nesses, respectively. ix is the polar radius of gyration of the cross-section about the shear center

i2x ¼ z2sc þ
Iyy þ Izz

A
; ð5Þ

where zsc is the distance between the shear center (SC) and the centroid (C) (Fig. 2). Iyy and Izz are the second
moments of area about axes y and z, respectively, and A is the area of the cross-section.

Eq. (1) yields

Mcr ¼ bNN B
crz

b1

2

0@ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2

� �2

þ
bNN B
crwi2xbNN B
crz

vuut 1A: ð6Þ

The buckling load of a simply supported beam subjected to uniformly distributed load (q) is given by the
root of the following equation (Koll�aar, 1999):

Fig. 2. Location of the shear center and the applied load.
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p2 þ 3

12p2

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0:01181

l4q2
cr �

p2 � 3

12p2|fflfflffl{zfflfflffl}
0:05800

b1

0BB@ þ 1

p2|{z}
0:10132

f

1CCAl2 bNN B
crzqcr � bNN B

crz
bNN B
crwi

2
x ¼ 0; ð7Þ

which yields

Mcr ¼
qcrl2

8
¼ 1:15bNN B

crz 0:466f

0@ þ 0:267b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:466f þ 0:267b1Þ

2 þ
bNN B
crwi2xbNN B
crz

vuut 1A: ð8Þ

In these equations f is the distance between the shear center and the location of the applied load (Fig. 2) and
l is the length of the beam.

Clark and Hill (1960) presented a formula (see also Allen and Bulson, 1980) for the buckling load of
simply supported and cantilever beams in the form

Mcr ¼ C1

p2

ðklÞ2
2 cEIEIzz C2f

0@ þ C3b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2f þ C3b1Þ

2 þ
cEIEIxcEIEIzz

1þ
cGIGItcEIEIx

ðklÞ2

p2

 !vuut 1A; ð9Þ

where C1, C2, C3 are constants and Mcr is the critical value of the maximum bending moment, which is
related to the loads (see Table 1). k ¼ 1 for a cantilever beam otherwise it depends on the end conditions for
a simply supported beam. When the rotation of the end cross-sections are not restrained about the z-axis
k ¼ 1, when these rotations and warping are restrained k ¼ 0:5. (The constants C1, C2, C3 in Table 1 were
taken from Clark and Hill (1960) for all the cases except for case d. For this case the constants were de-
termined in Section 5.4.)

Note that the constants for the simply supported beam agree within 5% of those given in Eqs. (6) and (8),
which is negligible for practical purposes. We also note that Eq. (9) gives the accurate value of the buckling
load for concentrated moments.

Care should be taken when Eq. (9) is applied to short cantilever beams subjected to loads above or below
the shear center. By numerical comparison we obtained that for short beams Eq. (9) gives reasonable value
for the critical load only if the beam is subjected at the shear center (see Section 7).

When pultruted composite beams are made of unidirectional carbon fibers the longitudinal Young
modulus may be 20–30 times higher than the shear modulus, which means that the effect of shear defor-
mation is higher by an order of magnitude than that of isotropic beams. Pultruted beams are often made of

Table 1

Parameters in Eq. (9)

C1 C2 C3

Simply supported beam (k¼ 1)

(a) End moments 1 0 0.5

(b) Uniformly distributed load (Mcr ¼ qcrl2=8) 1.13 0.45 0.267

(c) Concentrated force (Mcr ¼ Pcrl=4) 1.35 0.55 0.212

(d) Two concentrated forces (Mcr ¼ Pcrl=3) 1.12 0.51 0.245

Simply supported beam (the rotations (about the z-axis) and the warping of the end cross-sections are restrained, k¼ 0.5)

(a) Concentrated force (Mcr ¼ Pcrl=4) 1.07 0.42 n.a

Cantilever beam (k¼ 1)

(a) Distributed load (Mcr ¼ qcrl2=2) 2.05 n.a n.a

(b) Concentrated force (Mcr ¼ Pcrl) 1.28 n.a n.a
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glass fibers with about 50% of unidirectional fibers and 50% of continuous mat. For such beams the ratio of
the Young modulus and the shear modulus is in the range of 5–10. The horizontal displacements of the
beam is illustrated in Fig. 3. When there is no shear deformation the beam deforms as shown in Fig. 3(a),
while when there is only shear deformation (no bending deformation) the deformed beam is illustrated in
Fig. 3(b).

Several authors investigated the lateral-torsional buckling of pultruted composite beams (Brooks and
Turvey, 1995; Davalos and Qiao, 1997; Davalos et al., 1997; Johnson and Shield, 1998; Lin et al., 1996;
Mottram, 1992; Pandey et al., 1995; Sherbourne and Kabir, 1995; Turvey, 1996; Zureick et al., 1995) and
although most of the authors mention the effect of the shear deformation only Sherbourne and Kabir
(1995) considered it in their analytical result. In their article they took the transverse shear deformation into
account but they neglected the shear deformation in torsion. They considered simply supported beams with
doubly symmetric cross-section subjected to loads acting at the shear center.

In this paper we wish to determine the lateral-torsional buckling load of composite beams taking both
the lateral and torsional shear deformation into account. (The cross-section of the beam may be mono-
symmetrical and the beam may be loaded above or below the shear center.)

2. Problem statement

We consider symmetrical cross-section prismatic beams loaded in the plane of symmetry. The beam is
either simply supported at both ends (Fig. 4) or one end is built in and the other is free (cantilever, Fig. 5). A
simple support restrains the displacements and the rotation about the beam’s x-axis, but allows the rotation
about the y- and z-axes, and the warping of the cross-section.

Fig. 3. Horizontal displacement of a beam when the shear deformation is neglected (a), and when only the shear deformation is taken

into account (b).
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Fig. 4. Simply supported beams.

Fig. 5. Cantilever beams.
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The simply supported beam may be loaded by concentrated moments at the ends (Fig. 4(a)), by a
uniformly distributed load acting at a distance f from the shear center of the beam (Fig. 4(b)), by a con-
centrated load at the midspan (Fig. 4(c)) or by two concentrated forces at the thirds of the span (Fig. 4(d)).

The cantilever beam may be loaded at the shear center by a uniformly distributed load (Fig. 5(a)) or by a
concentrated force (Fig. 5(b)). The loads are acting at the shear center.

We determine the critical load of the beam subjected to the above mentioned loads.

3. Approach

The critical load of a beam can be determined analytically, numerically, or by experiments. Here, our
main interest is to derive explicit expressions for the buckling loads. However, we will use a commercially
available FE code (ANSYS, 1997) to verify our results numerically, and we will also compare our results to
experimental data from the literature.

It is assumed that the material behaves in a linearly elastic manner and the deformations are small. We
are interested only in the bifurcation load, the deformations prior to buckling are not considered.

Under the applied loads the beam may buckle globally or its walls may buckle locally (plate buckling).
Here local buckling of the members (such as web or flanges) are not considered.

When modelling the beam ‘‘first order shear theory’’ is applied. Beams may undergo transverse and
torsional shear deformation which must be taken into account. Wu and Sun (1992) suggested a model to
account for the torsional shear deformation, which was simplified in Koll�aar (2001a). This latter model is
adopted here.

4. Governing equations

The governing equations of the beam theory are summarized below. The equilibrium equations, the
strain–stress relationship and the constitutive equations are as follows (Koll�aar, 2001a):

Equilibrium equations:

dMz

dx
¼ Vy ;

dMy

dx
¼ Vz;

dMx

dx
¼ Tx;

dVy

dx
¼ �py ;

dVz

dx
¼ �pz;

dTsv

dx
þ dTx

dx
¼ �t; ð10Þ

where Mz, Vy , py and My , Vz, pz are the bending moment, the shear force and the external load in the y–x and
z–x planes, respectively. Mx is the bimoment, and t is the distributed torque load (Fig. 6). Tsv and Tx are the
Saint-Venant torque and the restrained warping induced torque respectively and the total torque (T) is

T ¼ Tsv þ Tx: ð11Þ

Strain–displacement relationships:

jz ¼ �
dvy

dx
; jy ¼ � dvz

dx
; # ¼ dw

dx
; C ¼ � d#B

dx
; #S ¼

dw
dx

� #B; cy ¼
dv
dx

� vy ; cz ¼
dw
dx

� vz;

ð12Þ

where v and w are the displacements in the y–x and z–x planes, w is the rotation of the cross-section about
the x-axis (angle of twist). vy and vz are the rotations of the cross-section about the z- and y-axes; while #B is
the twist per unit length, when there is no shear deformation present in the beam. cy and cz are the shear
strains in the x–y and the x–z planes, while #S is the twist per unit length due to the shear deformation of
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the wall (see also Roberts and Al-Ubaidi, 2001). We note that in the presented theory the first derivative of
the displacements are

dv
dx

¼ vy þ cy ;
dw
dx

¼ vz þ cz;
dw
dx

¼ #B þ #S; ð13Þ

while if there is no shear deformation (e.g. in Vlasov’s beam theory), cy ¼ cz ¼ #S ¼ 0, the derivatives are:

dv
dx

¼ vy ;
dw
dx

¼ vz;
dw
dx

¼ #B: ð14Þ

Constitutive equations: Considering a cross-section which is symmetrical with respect to the z-axis, the
constitutive equations are (Koll�aar, 2001a):

Mz

My

Mx

8<:
9=; ¼

cEIEIzz 0 0
0 cEIEIyy 0

0 0 cEIEIx

24 35 jz

jy

C

8<:
9=;; ð15Þ

Vy

Vz

Tx

8<:
9=; ¼

bSSyy 0 bSSyx

0 bSSzz 0bSSyx 0 bSSxx

24 35 cy

cz

#S

8<:
9=;; ð16Þ

Tsv ¼ cGIGIt#; ð17Þ

where cEIEIzz, cEIEIyy , cEIEIx, and cGIGIt are the bending, warping and torsional stiffnesses of a composite beam,
respectively. (For isotropic beams the same expressions are applicable without the ‘‘hats’’.)

The calculation of the stiffnesses (cEIEIzz, cEIEIyy , cEIEIx, cGIGIt, bSSyy , bSSzz, bSSxx, bSSyx) are given in Koll�aar (2001b), and
the formulas for a monosymmetric I-beam are summarized in Appendix A.

Fig. 6. Transverse and torque loads acting on the beam (top), internal moments and shear forces (bottom).
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4.1. Governing equations for lateral-torsional buckling

The governing equations for lateral-torsional buckling of beams without shear deformation are given in
Koll�aar (1999). The equilibrium equations, regardless of the presence of the shear deformation, are

dMz

dx
¼ Vy ;

dMx

dx
¼ Tx; ð18Þ

dVy

dx
¼ �py ;

dTsv

dx
þ dTx

dx
¼ �t; ð19Þ

where

py ¼ � d2ðMywÞ
dx2

; t ¼ �My
d2v
dx2

f
d2My

dx2
w þ b1

d

dx
My

dw
dx

� �
: ð20Þ

My is the horizontal bending moment of the beam in the z–x plane which can be calculated from the vertical
loads, and f is the distance of this load from the shear center.

b1 is a cross-sectional property defined for an isotropic cross-section beam as (see Koll�aar, 1999)

b1 ¼ J1 þ J2 � 2zsc: ð21Þ
For a beam made of isotropic material J1 and J2 are

J1 ¼
1

Iyy

Z
ðAÞ

z3 dA; J2 ¼
1

Iyy

Z
ðAÞ

zy2 dA: ð22Þ

For a thin walled, open section, isotropic beam J1 and J2 may be written as

J1 ¼
1

EIyy

Z
ðSÞ
ðEhÞz3 dg; J2 ¼

1

EIyy

Z
ðSÞ
ðEhÞzy2 dg; ð23Þ

where h is the thickness of the wall and g is the coordinate along the perimeter. For an orthotropic sym-
metrical lay-up beam, Eh is replaced by 1=a11 and EIyy is replaced by cEIEIyy . This gives

J1 ¼
1cEIEIyy

Z
ðSÞ

1

a11

z3 dg; J2 ¼
1cEIEIyy

Z
ðSÞ

1

a11

zy2 dg: ð24Þ

For an orthotropic I-beam these integrals result in

J1 ¼
1cEIEIyy

 
� 1

ða11Þf1
bf1ðd � zcÞ3 þ

1

ða11Þf2
bf2z

3
c �

1

ða11Þx
b4

x1 � b4
x2

4

!
;

J2 ¼
1cEIEIyy

 
� 1

ða11Þf1

b3
f1

12
ðd � zcÞ þ

1

ða11Þf2

b3
f2

12
zc

!
:

ð25Þ

The symbols are defined in Appendix A.
We note that for a doubly symmetric cross-section beam b1 ¼ J1 ¼ J2 ¼ 0.
In the above equilibrium equations the bending moment My is known, and the shear force Vz does not

appear. The relevant part of the strain–displacement equations (Eq. (12)) is

jz ¼ �
dvy

dx
; # ¼ dw

dx
; ð26Þ
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C ¼ � d#B

dx
; #S ¼

dw
dx

� #B; ð27Þ

cy ¼
dv
dx

� vy ; ð28Þ

while the relevant part of the strain–stress relationship (Eqs. (15)–(17)) is

Mz

Mx

! "
¼

cEIEIzz 0

0 cEIEIx

" #
jz

C

! "
;

Vy

Tx

! "
¼

bSSyy
bSSyxbSSyx
bSSxx

" #
cy

#S

! "
;

Tsv ¼ cGIGIt#:

ð29Þ

5. Simply supported beams

In this section simply supported beams are considered (Fig. 4).

5.1. End moments

When the beam is subjected to concentrated bending moments at the ends (Fig. 4(a)) Eq. (20) simplifies
to

py ¼ �My
d2w
dx

; t ¼ �My
d2v
dx

þ b1My
d2w
dx

: ð30Þ

When the beam is simply supported the displacements in the y direction and the rotation about the x-axis
are zero

v ¼ 0; w ¼ 0 at x ¼ 0; l: ð31Þ
The end cross-sections may rotate about the z-axis and is free to warp, hence

Mz ¼ 0; Mx ¼ 0 at x ¼ 0; l: ð32Þ

The following displacement functions satisfy the boundary conditions:

v ¼ v0 sin ipx
l ; vy ¼ v0 cos

ipx
l ;

w ¼ w0 sin
ipx
l ; #B ¼ #B

0 cos
ipx
l :

i ¼ 1; 2; . . . ð33Þ

The deformation of the beam for i ¼ 1 is illustrated in Fig. 1(b). At the supports the beam rotates about the
z- and y-axes and the cross-section warps, however the rotation of the cross-section about the z-axis is zero.
(We note that these displacement functions satisfy the governing equations.)

By substituting Eq. (33) into Eqs. (26)–(28) and Eq. (30), then jz, C and cy , #S and # into Eq. (29) and the
obtained expressions for Mz, Mx and Vy , Tx, Tsv and py; t into the equilibrium equations (Eqs. (18) and (19)),
after algebraic manipulation Eq. (18) gives

i2p2

l2
½cEIEI �

��
þ ½bSS �� v0

#B
0

! "
� ip

l
½bSS � v0

w0

! "�
cos

ipx
l

¼ 0; ð34Þ

and Eq. (19) results in
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i2p2

l2
½bSS ���

þ i2p2

l2
0 0

0 cGIGIt

% &
þ i2p2

l2
Mcr

0 �1

�1 b1

% &�
v0
w0

! "
� ip

l
½bSS � v0

#B
0

! "�
sin

ipx
l

¼ 0; ð35Þ

where

½cEIEI � ¼ cEIEIzz 0
0 cEIEIx

% &
; ð36Þ

½bSS � ¼ bSSyy
bSSyxbSSyx
bSSxx

" #
: ð37Þ

By eliminating v0 and #B
0 from Eqs. (34) and (35) we obtain

½bSS � 
� ½bSS � i2p2

l2
½cEIEI �

�
þ ½bSS ���1

½bSS � þ 0 0

0 cGIGIt

% &
þ Mcr

0 �1

�1 b1

% &!
v0
w0

! "
¼ 0: ð38Þ

The lowest buckling load is obtained if i ¼ 1. With this substitution the condition of the nontrivial solution
is

½Q�
'''' þ Mcr

0 �1
�1 b1

% &'''' ¼ 0; ð39Þ

where

½Q� ¼ 1
p2
l2

½cEIEI ��1

 
þ ½bSS ��1

!�1

þ
0 0

0 cGIGIt

% &
: ð40Þ

Eq. (39) results in a second order equation to determine the critical bending moment, Mcr. (Since the
assumed displacement functions Eq. (33) satisfy both the boundary conditions and the governing equations
the derived expression for Mcr results in the exact buckling moment.)

Approximate solution: The solution simplifies when the cross-section is doubly symmetric, and hence,bSSyx ¼ 0. This condition can be taken as an approximation for cross-sections which are symmetrical only
about the z-axis:bSSyx 	 0: ð41Þ
In this case matrix [Q] becomes

½Q� ¼
bNN BS
crz 0

0 i2x bNN BS
crw

" #
; ð42Þ

where

bNN BS
crz ¼ 1bNN B

crz

 
þ 1bSSyy

!�1

; ð43Þ

bNN BS
crw ¼ bNN BS

crx þ 1

i2x
cGIGIt: ð44Þ
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Eq. (43) was first derived by Engesser (1889). Here

bNN BS
crx ¼ 1bNN B

crx

0@ þ 1
1
i2x
bSSxx

1A�1

; ð45Þ

bNN B
crz and

bNN B
crx are given by Eqs. (2) and (4).

The polar radius of gyration of the cross-section about the shear center for an orthotropic beam is

i2x ¼ z2sc þ
cEIEIyy þcEIEIzzcEAEA

; ð46Þ

where cEAEA is the tensile stiffness of the composite beam.
We note that bNN BS

crz and
bNN BS
crw are the in-plane buckling and torsional buckling loads of a simply supported

beam taking the shear deformations into account (Koll�aar, 2001a).
By this simplification of matrix [Q] Eq. (39) yieldsbNN BS

crz �Mcr

�Mcr i2x bNN BS
crw þ b1Mcr

'''''
''''' ¼ 0: ð47Þ

By rearranging Eq. (47) we obtain

M2
cr � bNN BS

crz b1Mcr � bNN BS
crz
bNN BS
crwi

2
x ¼ 0: ð48Þ

Note that Eq. (48) is identical to Eq. (1), which was derived for a beam without shear deformation, if the
following substitutions are made:

bNN B
crz ! bNN BS

crz ¼ 1bNN B
crz

 
þ 1bSSyy

!�1

; ð49Þ

bNN B
crx ! bNN BS

crx ¼ 1bNN B
crx

0@ þ 1
1
i2x
bSSxx

1A�1

; ð50Þ

bNN B
crw ! bNN BS

crw; ð51Þ

where bNN B
crz and

bNN B
crx are given by Eqs. (2) and (4), and bNN B

crw is given by Eq. (3) and bNN BS
crw by Eq. (44).

The effect of neglecting bSSyx will be investigated in the numerical examples.
Eqs. (49)–(51) show that both the horizontal shear deformation (through bSSyy) and the torsional shear

deformation (through bSSxx) reduce the critical moment (Mcr).

5.2. Uniformly distributed load

A simply supported beam subjected to a uniformly distributed load (q) is considered (Fig. 4(b)). The
bending moment (My) is given by

My ¼ q
xðl � xÞ

2
; ð52Þ

and the coefficients of the governing differential equations (Eqs. (18)–(20)) are not constant.
Following Chwalla’s steps for beams without shear deformation (Koll�aar, 1999) we derive an approxi-

mate solution for the differential equations by using the Ritz method with one term approximation.
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The potential energy of the beam is

P ¼ U þ W ; ð53Þ
where U is the strain energy

U ¼
cGIGIt
2

Z 1

0

#2 dx þ
cEIEIx

2

Z 1

0

C2 dx þ
cEIEIzz
2

Z 1

0

j2
z dx þ

bSSyy

2

Z 1

0

c2y dx þ
bSSxx

2

Z 1

0

#2
S dx þ 2

bSSyx

2

�
Z 1

0

cy#S dx; ð54Þ

and W is the work done by the external load (Koll�aar, 1999)

W ¼ � 1

2

Z 1

0

½�b1My#
2 � 2Mywjz�dx �

�f
2

Z 1

0

½qw2�dx: ð55Þ

We assume the following approximate displacement functions (which satisfy the boundary conditions Eqs.
(31) and (32)):

v ¼ v0 sin
px
l
; vy ¼ v0 cos

px
l
;

w ¼ w0 sin
px
l
; #B ¼ #B

0 cos
px
l
:

ð56Þ

The deformation of the beam is illustrated in Fig. 1(b). The principle of stationary potential energy gives

oP
ov0

¼ 0;
oP
o#B

0

¼ 0; ð57Þ

oP
o#0

¼ 0;
oP
ow0

¼ 0: ð58Þ

Substituting Eqs. (53)–(56) into Eq. (57) we obtain after algebraic manipulations

p2

l2
½cEIEI �

�
¼ ½bSS �� v0

#B
0

! "
� p

l
½bSS � v0

w0

! "
¼ 0; ð59Þ

while substituting Eqs. (53)–(56) into Eq. (58) results in:

p2

l2
½bSS �  

þ p2

l2
0 0
0 cGIGIt

% &
þ p2

l2
qcr

0 � p2þ3
12p2 l2

� p2þ3
12p2 l2 p2�3

12p2 l2b1 þ 1
p2 l

2f

" #!
v0
w0

! "
� p

l
½bSS � v0

#B
0

! "!
¼ 0: ð60Þ

By eliminating v0 and #B
0 from these two equations we obtain

½Q�
 

þ qcr
0 � p2þ3

12p2 l2

� p2þ3
12p2 l2 p2�3

12p2 l2b1 þ 1
p2 l

2f

" #!
v0
w0

! "
¼ 0; ð61Þ

where [Q] is given by Eq. (40).
The condition of the nontrivial solution is:

½Q�
''''' þ qcr

0 � p2þ3
12p2 l2

� p2þ3
12p2 l2 p2�3

12p2 l2b1 þ 1
p2 l

2f

" #''''' ¼ 0: ð62Þ

Further approximation: When the off diagonal terms in the shear stiffness matrix are zero or neglected
(bSSyx ¼ 0), matrix [Q] simplifies to Eq. (42) and Eq. (62) can be written in the form
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p2 þ 3

12p2

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0:01181

l4q2
cr �

p2 � 3

12p2|fflfflffl{zfflfflffl}
0:05800

b1

0BB@ þ 1

p2|{z}
0:10132

f

1CCAl2 bNN BS
crz qcr � bNN BS

crz
bNN BS
crwi

2
x ¼ 0; ð63Þ

where bNN BS
crz ,

bNN BS
crw are defined by Eqs. (43) and (44). We note that Eq. (63) is identical to Eq. (7) if the

substitutions given by Eqs. (49)–(51) are made.

5.3. Concentrated load at the midspan

We consider a simply supported beam subjected to a concentrated force (P) at the midspan (Fig. 4(c)).
The Ritz method is applied to derive a closed form approximate solution for the buckling load. The
function of the bending moment My is

My ¼
P
2
x; if 06 x6 l

2
;

P
2
ðl � xÞ; if l

2
< x6 l;

!
ð64Þ

and the expression for the work done by the external load is (see Eq. (55))

W ¼ � 1

2

Z l

0

½�b1My#
2 � 2Mywjz�dx �

�f
2

P ðwP Þ
2
; ð65Þ

where wP is the rotation of the cross-section at the position of the applied load.
With the above bending moment and external work, following the same steps as in Section 5.2, we obtain

the following equation for the critical load:

½Q�
''''' þ Pcr

0 � p2þ4
8p2 l

� p2þ4
8p2 l p2�4

8p2 lb1 þ 2
p2 lf

" #''''' ¼ 0: ð66Þ

By applying the bSSyx ¼ 0 approximation, we obtain

p2 þ 4

8p2

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0:03086

l2P 2
cr �

p2 � 4

8p2|fflfflffl{zfflfflffl}
0:07434

b1

0BB@ þ 2

p2|{z}
0:20264

f

1CCAlbNN BS
crz Pcr � bNN BS

crz
bNN BS
crwi

2
x ¼ 0: ð67Þ

5.4. Two concentrated forces at the thirds of the span

When the beam is subjected to two concentrated forces (Fig. 4(d)) the buckling load can be determined
similarly as in Section 5.3. The result, without giving the details, is

½Q�
''''' þ Pcr

0 � 8p2þ27
36p2 l

� 8p2þ27
36p2 l 8p2�27

36p2 lb1 þ 3
p2 lf

" #''''' ¼ 0: ð68Þ

By applying the bSSyx ¼ 0 approximation, we have

8p2 þ 27

36p2

� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0:08893

l2P 2
cr �

8p2 � 27

36p2|fflfflfflfflffl{zfflfflfflfflffl}
0:14623

b1

0BB@ þ 3

p2|{z}
0:30396

f

1CCAlbNN BS
crz Pcr � bNN BS

crz
bNN BS
crwi

2
x ¼ 0: ð69Þ
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5.5. General case

Eqs. (48), (63), (67), and (69) can be written in the form

Mcr ¼ C1
bNN BS
crz C2f

0@ þ C3b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2f þ C3b1Þ

2 þ
bNN BS
crwi2xbNN BS
crz

vuut 1A; ð70Þ

where C1, C2 and C3 are given in Table 1 and bNN BS
crz and bNN BS

crw, are given by Eqs. (43) and (44).
We observe that the buckling load for a simply supported beam can also be calculated such that the

stiffnesses cEIEIzz and cEIEIx are modified due to the shear deformation in the formula of the buckling load of the
corresponding beam without shear deformation (see Eq. (9)).

The necessary modifications are

Beam without shear deformation Beam with shear deformationcEIEIzz ! 1bEIEIzz
þ p2

ðklÞ2
1bSSyy

� ��1

;

cEIEIx ! 1bEIEIx

þ p2

ðklÞ2
1bSSxx

� ��1

;

ð71Þ

where k ¼ 1 and l is the total length of the simply supported beam.
By making the above substitutions in Eq. (9), it becomes identical to Eq. (70).

6. Cantilever beams

For cantilever beams the Ritz method with one term approximation significantly overestimates the
buckling load even for the case of beams without shear deformation (Szatm�aari and Tomka, 1991). In order
to obtain a satisfactory solution between ten and twenty terms are required in the analysis (see Roberts and
Burt, 1985).

Using the analytical solution in Clark and Hill (1960), we arrive at Eq. (9) by substituting kl for l, where
kl is the ‘‘effective’’ length. Clark and Hill (1960) gives k ¼ 1 for a cantilever beam subjected to a uniformly
distributed load or to a concentrated force at the end.

Here we suggest the modification of Eq. (9) (presented by Clark and Hill (1960) for beams without shear
deformation), similarly as it was derived for simply supported beams.

Accordingly, the buckling load of a cantilever beam can be calculated from Eq. (9) when the stiffnesses
are modified as shown in Eq. (71). In this equation l is the total length of the cantilever and k ¼ 1.

The accuracy of this solution will be investigated numerically in the next section.

7. Numerical examples

7.1. Simply supported beam with doubly symmetric cross-section

We consider a beam made of unidirectional carbon fiber reinforced epoxy. The Young modulus in the
fiber direction is E1 ¼ 148 kN/mm2 and the shear modulus is G12 ¼ 4:55 kN/mm2 (Tsai, 1988).

The cross-section of the beam is given in Fig. 7. The top and the bottom flanges are identical,
bf1 ¼ bf2 ¼ 120 mm and hf1 ¼ hf2 ¼ 5 mm. The beam is simply supported at the ends, the length is l ¼ 1600
mm.
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The beam is subjected to concentrated moments at the ends. We determine the critical value of Mcr

below. The beam is doubly symmetric, hence zsc ¼ cEIEIyz ¼ bSSyz ¼ bSSzx ¼ 0. The nonzero stiffnesses were cal-
culated according to the expressions given in Appendix A. The cross-sectional properties presented in Table
2 (right column).

Eqs. (2), (4) and (3) givebNN B
crz ¼ 822 kN; bNN B

crx ¼ 843 kN; bNN B
crw ¼ 861 kN:

When shear deformation is neglected, the buckling load is calculated from Eq. (6). It gives

MB
cr ¼ 51:92 kNm:

Taking the shear deformation into account we have (Eqs. (43), (45) and (44))bNN BS
crz ¼ 696 kN; bNN BS

crx ¼ 714 kN; bNN BS
crw ¼ 732 kN:

With these values Eq. (6) gives

MBS
cr ¼ 44:06 kNm:

Fig. 7. Cross-section of a graphite epoxy composite I-beam.

Table 2

The stiffnesses and geometrical parameters of the beams used for the numerical examples

bf2 ¼ 60 mm bf2 ¼ 120 mmcEIEIzz (kNmm2) 120:07� 106 213:3� 106cEIEIx (kNmm4) 185� 109 832:5� 109cGIGIt (kNmm2) 0:057� 106 0:068� 106bSSyy (kN) 3412.5 4550bSSxx (kNmm2) 14482� 103 17773� 103bSSyx (kNmm) �94792 0

b1 (mm) 84.83 0

i2x (mm2) 4514 3806

ftop (mm) �13.89 �62.5

fbottom (mm) 111.11 62.5
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The same beam was investigated with the aid of a finite element program (ANSYS). Four node Mindlin
shell elements were used with the maximum element size of 20 mm. The result is

MANSYS
cr ¼ 44:19 kNm:

Note that when only the transverse shear deformation is taken into account (but the shear deformation in
warping is neglected) the buckling load is

Mcr ¼ 47:78 kNm:

To show the effect of the shear deformation the buckling loads were calculated for different lengths of the
beam. The results are given in Fig. 8.

The beam was also subjected to either a uniformly distributed load or to a concentrated force at the
midspan. Trials were run applying the load at the shear center, the top flange, and the bottom flange.

The buckling load was calculated according to Eq. (70) with the appropriate Ci parameters and using the
finite element program. The result are given in Fig. 8.

7.2. Simply supported beam with monosymmetric cross-section

We consider a simply supported beam with the same material properties that are given in Section 7.1.
The cross-section is given in Fig. 7. The top and the bottom flanges are different with bf1 ¼ 120 mm,
bf2 ¼ 60 mm, hence the cross-section is monosymmetrical.

Fig. 8. Critical loads of the doubly symmetric simply supported beams.
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The beam is subjected to concentrated moments at the ends.
The properties of the cross-section were calculated according to the expressions given in Appendix A and

according to Eqs. (21) and (25) and are given in the left column of Table 2.
The critical load was calculated from Eq. (39) for different lengths of the beam. The results are presented

in Fig. 9 by solid line. These results show good agreement with the FE calculations which are also given in
this figure.

The approximate buckling loads were also calculated by Eq. (6) taking the substitutions in Eq. (71) into
account. These results are presented by a dashed line.

The figure shows that the shear deformation may significantly reduce the buckling load of short beams
and that the suggested approximation is reasonable.

The beam was also subjected to either a uniformly distributed load or to a concentrated force at the
midspan. The loads were applied either at the shear center, the top flange, or the bottom flange.

The buckling loads were calculated according to Eqs. (62) and (66) and by using the finite element
program. The result are given in Fig. 9b and c.

7.3. Cantilever beam

A cantilever beam with the same material properties and cross-section given in Section 7.1 was con-
sidered. The beam was subjected to a uniformly distributed load and to a concentrated force at the end. The

Fig. 9. Critical loads of the monosymmetric simply supported beams.
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loading was applied at the shear center. Buckling loads were calculated according to Eq. (9) with the
substitution suggested in Eq. (71) and by using the finite element program. The results are given in Fig. 10.
It shows that for short beams the shear deformation reduces the buckling load, and the suggested calcu-
lation is reasonable.

7.4. Comparison with published results

Mottram (1992) investigated three E-glass reinforced pultruted doubly symmetric I-beams. Warping,
twisting, and rotation about the minor axis (z) were restrained at the supports, only rotation about the
major axis (y) was allowed. The beams were subjected to a concentrated force at the midspan applied at the
top flange. In the general expression for the buckling load Eq. (9) the parameters are (Table 1): k ¼ 0:5,
C1 ¼ 1:07, C2 ¼ 0:42. The bending and warping stiffnesses were modified as proposed in Eq. (71) with
k ¼ 0:5. The calculated critical buckling load, taking the shear deformations into account, is PBS

cr ¼ 5:1 kN
(and without shear deformation PB

cr ¼ 5:5 kN) which is in the upper range of the critical loads received from
the experiments reported in range 2.8–5.75 kN. The higher loads belong to the cases where the behaviour of
the beams were closer to the theoretical bifurcation. The lower critical load values show the great sensitivity
due to geometric and loading imperfections and due to different uncertainties in the test set-up e.g. the
support conditions did not give full restraints against warping and lateral rotation, which reduces the
buckling load.

Zureick et al. (1995) analysed an E-glass doubly symmetric I-beam. The beam was simply supported and
loaded at the third points with concentrated forces applied at the top flange. We determined the buckling
load using Eq. (69): PBS

cr ¼ 63:3 kN (and without shear deformation PB
cr ¼ 64:0 kN) which is very close to the

buckling load (Pcr ¼ 62:7 kN) determined by FE analysis in Zureick et al. (1995).
Lin et al. (1996) analysed numerically (FE) simply supported doubly symmetric I-beams subjected to

three different load conditions: concentrated moments at the ends, uniformly distributed load and a con-
centrated force at the midspan. The span of the beam was fixed and the critical loads were computed for
various E=G ratios. The same examples were solved using Eq. (70). The resulted critical loads coincide with
the loads given by the FE analysis (the errors are within 1%). We calculated the critical loads by neglecting
the effect of shear deformation and observed that the effect of shear deformation is negligible.

Sherbourne and Kabir (1995) published a method to determine the buckling load of doubly symmetric
thin-walled fibrous composite beams. We tried to compare our results with Eqs. (27)–(29) and (32)–(34) of
Sherbourne and Kabir (1995). However, these equations may contain a number of unknown typographical

Fig. 10. Critical loads of the cantilever beams.
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mistakes and our effort therefore was unsuccessful. We wish to emphasize that our derived formulas offer
the following advantages: our results are valid for cross-sections with one axis of symmetry, the beam can
be loaded out of the shear center (e.g. top or bottom flange loading), the formulas derived in this article are
simpler than those of Sherbourne and Kabir (1995).

8. Discussion

For composite beams the shear deformation may significantly reduce the lateral-torsional buckling load.
This reduction can be taken into account if in the expression of the lateral-torsional buckling of beams

(without shear deformation, Eq. (9)), the bending stiffness (cEIEIzz), and the warping stiffness (cEIEIx) are re-
placed as follows:

cEIEIzz !
1cEIEIzz

 
þ p2

ðklÞ2
1bSSyy

!�1

; cEIEIx ! 1cEIEIx

 
þ p2

ðklÞ2
1bSSxx

!�1

: ð72Þ

Below we discuss the circumstances under which the shear deformation affects the buckling load signifi-
cantly. To obtain simple result we consider a doubly symmetric beam loaded at the shear center, neglecting
the torsional stiffness (cGIGIt), the critical bending moment is (Eq. (9))

Mcr ¼ C1

p2

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficEIEIzzcEIEIx

q
: ð73Þ

The effect of shear deformation is taken into account according to Eq. (71). The error, a result of neglecting
the shear deformation is defined as

a ¼ MB
cr � MBS

cr

MB
cr

; ð74Þ

where MB
cr is the buckling load when the shear deformation is neglected, and MBS

cr is the buckling load when
the shear deformation taken into account.

Introducing Eq. (72) and Eq. (73) the expression of the error yields to

a ¼ 1�
C1

p2

l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1bEIEIzz
þ p2

l2
1bSSyy

� ��1

1bEIEIx

þ p2
l2

1bSSxx

� ��1
s

C1
p2
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficEIEIzzcEIEIx

q ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

l2
bEIEIzzbSSyy

� �
1þ p2

l2
bEIEIxbSSxx

� �s : ð75Þ

For a doubly symmetric I-beam (Appendix A)cEIEIzzbSSyy

	
cEIEIxbSSxx

	 b2

10

E
G
;

and the above expressions (Eq. (75)) yields

a ¼ 1� 1

1þ p2
10

b
l

* +2 E
G

	 b
l

� �2 E
G
; ð76Þ

where b is the width of the flanges, l is the span of the beam, E is the Young modulus in the direction of the
x-axis and G is the shear modulus. (The second approximation is applicable if a is small, say a < 20%.)
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For an isotropic beam E=G 	 2:5, for a standard glass polyester pultruted profile E=G is in the range of
5–10 while for a unidirectional carbon epoxy composite beam E=G is in the range of 20–30. Consequently,
the effect of shear deformation is significant for composite beams even if the ratio l=b is high. This is il-
lustrated below:

The error factor (a) derived above for doubly symmetrical I-beams subjected at the shear center, can be
applied, as an approximation for beams with different cross-sections and loading.

9. Conclusion

Explicit expressions were derived for the lateral-torsional buckling loads of composite beams. The effect
of shear deformation can be taken into account by simply reducing the bending and warping stiffnesses of
the composite beams (Eq. (71)). The derived results were verified by numerical examples.
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Appendix A. Elastic properties of a monosymmetrical I-beam

In the following we present the elastic properties of a laminated (or pultruted) I-beam illustrated in Fig.
11.

The layup of the flanges and the web is symmetrical and orthotropic (and hence the matrix [B] is zero,
and the 1, 6 and 2, 6 elements of the [A] and [D] matrices are zero).

The tensile stiffness (cEAEA) and the bending stiffnesses (cEIEIzz and cEIEIyy) are (Barbero et al., 1993)

cEAEA ¼ bf1

ða11Þf1
þ bf2

ða11Þf2
þ bw

ða11Þw
; ðA:1Þ

cEIEIzz ¼
bw

ðd11Þw
þ

b3
f1

12ða11Þf1
þ

b3
f2

12ða11Þf2
; ðA:2Þ

cEIEIyy ¼
bf1

ða11Þf1
ðd � zcÞ2 þ

bf2

ða11Þf2
z2c þ

1

ðd11Þf1
bf1 þ

1

ðd11Þf2
bf2 þ

1

ða11Þw
b3

w1 þ b3
w2

3

� �
; ðA:3Þ

l=b Isotropic Glass reinforced (unidirec-
tional fibersþmat)

Unidirectional carbon epoxy

E=A 2.5 5 10 20 30

5 a ¼ 9:0% a ¼ 16:5% a ¼ 28% a ¼ 44% a ¼ 54%
10 a ¼ 2:4% a ¼ 4:7% a ¼ 9:0% a ¼ 16:5% a ¼ 23%
15 a ¼ 1:1% a ¼ 2:1% a ¼ 4:2% a ¼ 8:1% a ¼ 11:6%
20 a ¼ 0:6% a ¼ 1:2% a ¼ 2:4% a ¼ 4:7% a ¼ 6:9%
40 a ¼ 0:15% a ¼ 0:3% a ¼ 0:6% a ¼ 1:2% a ¼ 1:8%
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where subscripts f1 and f2 refer to the top and bottom flanges, and ‘w’ refers to the web. aij and dij are the
elements of the compliance matrices of the laminate, and are calculated as

a11 a12 0
a12 a22 0
0 0 a66

24 35 ¼
A11 A12 0
A12 A22 0
0 0 A66

24 35�1

; ðA:4Þ

d11 d12 0
d12 d22 0
0 0 d66

24 35 ¼
D11 D12 0
D12 D22 0
0 0 D66

24 35�1

; ðA:5Þ

where Aij and Dij are the elements of the stiffness matrices of a laminate (Tsai, 1988) and must be calculated
for the top flange (f1), for the bottom flange (f2), and for the web (w). In Eq. (A.3)

bw1 ¼ bw þ hf2

2
� zc; bw2 ¼ zc �

hf2

2
; ðA:6Þ

where zc is the location of the centroid (i.e. the ‘‘center of gravity’’)

zc ¼
1cEAEA

bf1

ða11Þf1
d

 
þ bw

ða11Þw
d
2

!
: ðA:7Þ

The torsional and warping stiffnesses are (Barbero et al., 1993)

cGIGIt ¼ 4
bf1

ðd66Þf1

 
þ bf2

ðd66Þf2
þ d
ðd66Þw

!
; ðA:8Þ

cEIEIx ¼
b3

f2

12ða11Þf2
ed; ðA:9Þ

Fig. 11. Cross-section of a monosymmetric I-beam.
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where the location of the shear center e is

e ¼ d
b3

f1
1

ða11Þf1
b3

f1
1

ða11Þf1
þ b3

f2
1

ða11Þf2

: ðA:10Þ

The shear stiffness matrix ½bSS � is the inverse of the shear compliance matrix ½ŝs�:

½bSS � ¼ bSSyy 0 bSSyx

0 bSSzz 0bSSyx 0 bSSxx

24 35 ¼
ŝsyy 0 ŝsyx
0 ŝszz 0
ŝsyx 0 ŝsxx

24 35�1

; ðA:11Þ

where (Koll�aar, 2001b)

ŝsyy ¼ 1:2
ða66Þf1

bf1ð1þ dscÞ2

0B@ þ
ða66Þf2

bf2 1þ 1
dsc

, -2
1CA; ðA:12Þ

ŝszz ¼
ða66Þw

d
þ 1

12

ða66Þf1bf1

d2
þ 1

12

ða66Þf2bf2

d2
; ðA:13Þ

ŝsxx ¼ 1:2

d2

ða66Þf1
bf1

�
þ
ða66Þf2
bf2

�
; ðA:14Þ

ŝsyx ¼ � 1:2

d

0@�
ða66Þf1

bf1ð1þ dscÞ
þ

ða66Þf2
bf2 1þ 1

dsc

, -
1A; ðA:15Þ

and

dsc ¼
d � ðzc þ zscÞ
ðzc þ zscÞ

¼ d � e
e

: ðA:16Þ

When the flanges and the web are made of a single orthotropic layer the expressions of a11, a66, d11 and
d66 (Eqs. (A.4) and (A.5)) simplify to

a11 ¼
1

E1h
; a66 ¼

1

G12h
; d11 ¼

12

E1h3
; d66 ¼

12

G12h3
;

where E1 is the Young modulus in the direction of the beam’s axis, G12 is the in-plane shear modulus, and h
is the thickness of the laminate.
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